
International Journal of Theoretical Physics, Vol. 45, No. 3, March 2006 ( C© 2006)
DOI: 10.1007/s10773-006-9056-9
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We find the solutions of the Dirac equation for two plane waves (laser beams) and
we determine the modified Compton formula for the scattering of two photons on
an electron. The practical meaning of the two laser beams is, that two laser beams
impinging on a target which is constituted from material in the form a foam, can
replace 100–200 laser beams impinging on a normal target and it means that the nuclear
fusion with two laser beams is realistic in combination with the thermonuclear reactor
such as ITER.
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1. INTRODUCTION

The application of a laser as a source of intense electromagnetic radiation
enables to study the new class of physical processes which are running in the
intense field of the electromagnetic wave. The probability of some processes
are increased, or, decreased in comparison with the processes in vacuum. For
instance the probability of the process π → µ + ν is increased and the probability
of the process π → e + ν is decreased. Some processes which are forbidden in
vacuum, are allowed in the intense field of the electromagnetic wave (ν → π + µ,
or, e → π + ν ). The polarization of the electromagnetic wave plays important
role.

The situation with the two electromagnetic wave is the next step and the future
direction of the laser physics of elementary particles. The two laser beams can be
used in the thermonuclear reactor instead of many laser beams. Two laser beams
impinging on a target which is constituted from material in the form of foam, can
replace 100–200 laser beams impinging on a normal target and it means that the
nuclear fusion with two laser beams is realistic inside of the thermonuclear reactor
such as ITER in Cadarache near Aix-en-Provence in France. ITE (International
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Thermonuclear Experimental Reactor) R means “the way” in Latin and it will be
prepared to produce 500 MW of fusion power in 2016.

The laser field, or, the two laser fields is also the detector of the new properties
of elementary particles which cannot be revealed without laser. The situation with
the two independent lasers can give evidently further information on the properties
of elementary particles. At the same time, the laser and the system of two lasers can
be considered in chemistry as a specific catalyzer which was not known before the
existence of the laser physics. So, laser methods in particle physics and chemistry
can form in the near future the new scientific revolution, which is not described in
the standard monographs on the scientific revolutions.

We consider here the electron described by the the Dirac equation for two
different four-potentials of the plane electromagnetic waves. We derive the partial
differential equation for the wave function, which is generalized form of the Volkov
equation. We find the solutions of the Dirac equation for two orthogonal plane
waves. We determine the modified Compton formula for the scattering of two
photons on an electron.

The solution of the Dirac equation for the two waves was given by Sen Gupta
(1967) in the form of the Fourier series, however without immediate application.
The solution of the Dirac equation for the two waves with the perpendicular
polarization was given for instance by Lyulka (1974, 1975, 1977, 1985) who
described the decay of particles in the two laser fields. The derivation of the two-
wave solution is not explicitly involved in Lyulka articles. So,we investigate the
situation and present our results.

To be pedagogically clear, we remind in the next section the derivation of the
Volkov (1935) solution of the Dirac equation in vacuum.

2. VOLKOV SOLUTION OF THE DIRAC EQUATION
WITH MASSLESS PHOTONS

We follow the method of derivation and metric convention of (Berestetzkii
et al., 1989):

(γ (p − eA) − m)ψ = 0. (1)

where

Aµ = Aµ(ϕ); ϕ = kx. (2)

We suppose that the four-potential satisfies the Lorentz gauge condition

∂µAµ = kµ (Aµ)′ = (
kµAµ

)′ = 0, (3)

where the prime denotes derivative with regard to ϕ. From the last equation follows

kA = const = 0, (4)
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because we can put the constant to zero. The tensor of electromagnetic field is

Fµν = kµA′
ν − kνA

′
µ. (5)

Instead of the linear Dirac equation (1), we consider the quadratic equation,
which we get by multiplication of the linear equation by operator (γ (p − eA) + m)
(Berestetzkii et al., 1989). We get:[

(p − eA)2 − m2 − i

2
eFµνσ

µν

]
ψ = 0. (6)

Using ∂µ(Aµψ) = Aµ∂µψ , which follows from (3), and ∂µ∂µ = ∂2 = −p2,
with pµ = i(∂/∂xµ) = i∂µ, we get the quadratic Dirac equation for the four
potential of the plane wave:

[−∂2 − 2ie(A∂) + e2A2 − m2 − ie(γ k)(γA′)]ψ = 0. (7)

We are looking for the solution of the last equation in the form:

ψ = e−ipxF (ϕ). (8)

After insertion of eqs. (8) into (7), we get with (k2 = 0)

∂µF = kµF ′, ∂µ∂µF = k2F ′′ = 0, (9)

the following equation for F (ϕ)

2i(kp)F ′ + [−2e(pA) + e2A2 − ie(γ k)(γA′)]F = 0. (10)

The integral of the last equation is of the form (Berestetzkii et al., 1989):

F = exp

{
−i

∫ kx

0

[
e(pA)

(kp)
− e2

2(kp)
A2

]
dϕ + e(γ k)(γA)

2(kp)

}
u√
2p0

, (11)

where u/
√

2p0 is the arbitrary constant bispinor.
All powers of (γ k)(γA) above the first are equal to zero, since

(γ k)(γA)(γ k)(γA) = −(γ k)(γ k)(γA)(γA) + 2(kA)(γ k)(γA) = −k2A2 = 0.

(12)
where we have used eq. (4) and relation k2 = 0. Then we can write:

exp

{
e

(γ k)(γA)

2(kp)

}
= 1 + e(γ k)(γA)

2(kp)
. (13)

So, the solution is of the form:

ψp = R
u√
2p0

eiS =
[

1 + e

2kp
(γ k)(γA)

]
u√
2p0

eiS, (14)

where u is an electron bispinor of the corresponding Dirac equation

(γp − m)u = 0 (15)
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and we shall take it to be normalized by condition ūu = 2m. The mathematical
object S is the classical Hamilton–Jacobi function, which was determined in the
form:

S = −px −
∫ kx

0

e

(kp)

[
(pA) − e

2
A2

]
dϕ. (16)

The current density is

jµ = ψ̄pγ µψp, (17)

where �̄ is defined as the transposition of (14), or,

ψ̄p = ū√
2p0

[
1 + e

2kp
(γA)(γ k)

]
e−iS . (18)

After insertion of �p and �̄p into the current density, we have:

jµ = 1

p0

{
pµ − eAµ + kµ

(
e(pA)

(kp)
− e2A2

2(kp)

)}
. (19)

3. THE SOLUTION OF THE DIRAC EQUATION
FOR TWO PLANE WAVES

We suppose that the total vector potential is given as a superposition of the
potential A and B as follows:

Vµ = Aµ(ϕ) + Bµ(χ ), (20)

where ϕ = kx and χ = κx and k �= κ .
We suppose that the Lorentz condition is valid. Or,

∂µV µ = 0 = kµ

∂Aµ

∂ϕ
+ κµ

∂Bµ

∂χ
= kµAµ

ϕ + κµBµ
χ , (21)

where the subscripts ϕ, χ denote partial derivatives. The equation (21) can be
written in the more simple form if we notice that partial differentiation with
respect to ϕ concerns only A and partial differentiation with respect to χ concerns
only B. So we write instead eq. (21).

∂µV µ = 0 = kµ(Aµ)′ + κµ(Bµ)′ = kA′ + κB ′. (22)

Without loss of generality, we can write instead of eq. (22) the following one

kµ(Aµ)′ = 0; κµ(Bµ)′ = 0; or, kA = const = 0; κB = const = 0,

(23)
putting integrating constant to zero.
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The electromagnetic tensor Fµν is expressed in the new variables as in (5)

Fµν = kµA′
ν − kνA

′
µ + κµB ′

ν − κνB
′
µ. (24)

Now, we can write Dirac equation for the two potentials the form[
−∂2 − 2ie(V ∂) + e2V 2 − m2 − i

2
eFµνσ

µν

]
ψ = 0. (25)

where V = A + B, Fµν is given by eq. (24) and the combination of it with σ is
defined as follows:

i

2
eFµνσ

µν = ie(γ k)(γA′) + ie(γ κ)(γB ′) (26)

We will look for the solution in the standard Volkov form (8), or:

ψ = e−ipxF (ϕ, χ ). (27)

After performing all operations prescribed in eq. (25), we get the following
partial differential equation for the unknown function F (ϕ, χ ):

− 2kκFϕχ + (2ipk − 2ikB)Fϕ + (2ipκ − 2ieAκ)Fχ

+(e2(A + B)2 − 2e(A + B)p − ie(γ k)(γAϕ) − ie(γ κ)(γBχ ))F = 0. (28)

4. THE SOLUTION OF THE DIRAC EQUATION
FOR TWO ORTHOGONAL WAVES

Equation (28) was simplified by author (Pardy, 2004b) putting kκ = 0. How-
ever, ignoring this simplification, we write eq. (28) in the following form:

aFϕ + bFχ + cF = 2kκFϕχ , (29)

where

a = 2ipk − 2iekB; b = 2ipκ − 2ieκA (30)

and

c = e2(A + B)2 − 2e(A + B)p − ie(γ k)(γA′) − ie(γ κ)(γB ′). (31)

For the field which we specify by the conditions

kB = 0; κA = 0; AB = 0, (32)

we have:

2ipkFϕ + 2ipκκFχ + e2A2 + e2B2 − 2epA − 2epB − ie(γ k)(γA′)

− ie(γ κ)(γB ′))F = 2kκFϕχ . (33)
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Now, we are looking for the solution in the most simple form

F (ϕ, χ ) = X(ϕ)Y (χ ). (34)

After insertion of (34) into (33) and division of the new equation by XY, of
we get the terms depending only on ϕ, and on χ . Or, in other words we get:(

2i(pk + ikκ)
X′

X
+ e2A2 − 2epA − ie(γ k)(γA′)

)

+
(

2i(pκ + ikκ)
Y ′

Y
+ e2B2 − 2epB − ie(γ κ)(γB ′)

)
= 0 (35)

So, there are terms dependent on ϕ and terms dependent on χ only in eq.
(35). The only possibility is that they are equal to some constant λ and −λ. Then,

2i(pk + ikκ)X′ + (e2A2 − 2epA − ie(γ k)(γA′))X = λX (36)

and

2i(pκ + ikκ)Y ′ + (e2B2 − 2epB − ie(γ κ)(γB ′))Y = −λY (37)

We put λ = 0 without lost of generality. Now, the solution of eq. (35) is
reduced to the solution of two equations only. Because the form of the equations
is similar to the form of eq. (14), we can write the solution of these equations as
follows:

X =
[

1 + e

2(kp + ikκ)
(γ k)(γA)

]
u√
2p0

eiS1 , (38)

with

S1 =
∫ kx

0

e

(kp + ikκ)

[
(pA) − e

2
(A)2

]
dϕ. (39)

and

Y =
[

1 + e

2(κp + ikκ)
(γ κ)(γB)

]
u√
2p0

eiS2 , (40)

with

S2 = −
∫ κx

0

e

(κp + ikκ)

[
(pB) − e

2
(B)2

]
dχ. (41)

The total solution is then of the form:

ψp =
[

1 + e

2(kp + ikκ)
(γ k)(γA)

] [
1 + e

2(κp + ikκ)
(γ κ)(γB)

]

× u√
2p0

ei(S1(A)+S2(B)). (42)
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5. THE STANDARD COMPTON PROCESS

In order to find the wave function of the electron in the two laser beams,
let us first remind the well known Compton problem following from the Volkov
solution. The pioneering articles of this problem was written by Sen Gupta (1952)
solving the Compton scattering in the strong magnetic field. The next application
of the Volkov solution were done for the problem of pair production by collision
between a strong and coherent electromagnetic field and a single energetic photon
(Reiss, 1962). Later, Nikishov and Ritus (1964) and Goldman (1964a,b) used the
Reiss ideas in their articles. Plenty of problems concerning the application of the
Volkov solution can be seen in the Ritus article (Ritus, 1979).

Let us consider electromagnetic monochromatic plane wave which is polar-
ized in a circle. We write the four-potential in the form:

A = a1 cos ϕ + a2 sin ϕ, (43)

where the amplitudes ai are equal in magnitude and orthogonal, or,

a2
1 = a2

2 = a2, a1a2 = 0. (44)

Then, it is possible to show that the Volkov solution for this situation is of
the form (Berestetzkii et al., 1989):

ψp =
{

1 +
(

e

2(kp)

)
[(γ k)(γ a1) cos ϕ + (γ k)(γ a2) sin ϕ]

}
u(p)√

2q0

× exp

{
−ie

(a1p)

(kp)
sin ϕ + ie

(a2p)

(kp)
cos ϕ − iqx

}
, (45)

where

qµ = pµ − e2 a2

2(kp)
kµ (46)

follows from eq. (19) as a time-average value. In other words, qµ is the mean
value of quantity p0j

µ.
We know that the matrix element M corresponding to the emission of photon

by an electron in the electromagnetic field is as follows (Berestetzkii et al., 1989):

Sf i = −ie2
∫

d4xψ̄p′ (γ e′∗)ψp

eik′x
√

2ω′ , (47)

where ψp is the wave function of an electron before interaction with the laser
photons and ψp′ is the wave function of electron after emission of photon with
components k′µ = (ω′, k′). The quantity e′∗ is the polarization four-vector of
emitted photon.
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The matrix element (47) involves the following linear combinations:

e−iα1 sin ϕ+iα2 cos ϕ (48)

e−iα1 sin ϕ+iα2 cos ϕ cos ϕ (49)

e−iα1 sin ϕ+iα2 cos ϕ sin ϕ, (50)

where

α1 = e

(
a1p

kp
− a1p

′

kp′

)
, (51)

and

α2 = e

(
a2p

kp
− a2p

′

kp′

)
, (52)

Now, we can expand exponential function in the Fourier series, where the
coefficients of the expansion will be Bs, B1s , B2s . So we write:

e−iα1 sin ϕ+iα2 cos ϕ = e−i
√

α2
1+α2

2 sin(ϕ−ϕ0) =
∞∑

s=−∞
Bse

−isϕ (53)

e−iα1 sin ϕ+iα2 cos ϕ cos ϕ = e−i
√

α2
1+α2

2 sin(ϕ−ϕ0) cos ϕ =
∞∑

s=−∞
B1se

−isϕ (54)

e−iα1 sin ϕ+iα2 cos ϕ sin ϕ = e−i
√

α2
1+α2

2 sin(ϕ−ϕ0) sin ϕ =
∞∑

s=−∞
B2se

−isϕ (55)

The coefficients Bs, B1s , B2s can be expressed by means of the Bessel func-
tion as follows (Berestetzkii et al., 1989):

Bs = Js(z)eisϕ0 (56)

B1s = 1

2

[
Js+1(z)ei(s+1)ϕ0 + Js−1(z)ei(s−1)ϕ0

]
(57)

B2s = 1

2i

[
Js+1(z)ei(s+1)ϕ0 − Js−1(z)ei(s−1)ϕ0

]
, (58)

where the quantity z are now defined through the α-components, or,

z =
√

α2
1 + α2

2 (59)

and

cos ϕ0 = α1

z
; sin ϕ0 = α2

z
. (60)
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Functions Bs, B1s , B2s are related one to another as follows:

α1B1s + α2B2s = sBs, (61)

which follows from the well known relation for Bessel functions:

Js−1(z) + Js+1(z) = 2s

z
Js(z). (62)

The matrix element (47) can be written in the form (Berestetzkii et al., 1989):

Sf i = 1√
2ω′2q02q ′

0

∑
s

M
(s)
f i (2π )4iδ(4)(sk + q − q ′ − k′), (63)

where the δ-function involves the law of conservation:

sk + q = q ′ + k′; s = 1, 2, 3, ... (64)

with the relation

q2 = q ′2 = m2(1 + ξ 2) ≡ m2
∗ = m2

(
1 − e2a2

m2

)
, (65)

as it follows from eq. (46).
For s = 1, Eq. (64) has the physical meaning of the conservation of energy-

momentum of the one-photon Compton process, s = 2 has meaning of the two-
photon Compton process and s = n has meaning of the multiphoton interaction
with n photons.

It is possible to show, that the differential probability per unit volume and
unit time of the emission of the s harmonics is of the following form (Berestetzkii
et al., 1989):

dWs = |M (s)
f i |2

d3k′d3q ′

(2π )62ω′2q02q ′
0

(2π )4δ(4)(sk + q − q ′ − k′). (66)

In order to obtain the probability of emission of photon, we must make some
operation with the matrix element M . We will not perform these operations here.
We concentrate our attention on the conservation law in the formula (66). It can
be expressed by words as follows. The multiphoton object with the momentum sk

interacts with the electron of the momentum q, and the result is the electron with
the momentum q ′ and one photon with the momentum k′.

Now, let us consider the eq. (64) in the form

sk + q − k′ = q ′. (67)

If we introduce the angle � between k and k′, then, with |k| = ω and
|k′| = ω′, we get from the squared eq. (67) in the rest system of electron, where
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q = (m∗, 0), the following equation:

s
1

ω′ − 1

ω
= s

m∗
(1 − cos �), (68)

which is modification of the original equation for the Compton process

1

ω′ − 1

ω
= 1

m
(1 − cos �). (69)

So, we see that Compton effect described by the Volkov solution of the Dirac
equation differs from the original Compton formula only by the existence of the
renormalized mass and parameter s of the multiphoton interaction.

We know that the last formula of the original Compton effect can be written
in the form suitable for the experimental verification, namely:

λ′ − λ = �λ = 4π
h̄

mc
sin2 �

2
, (70)

which was used by Compton for the verification of the quantum nature of light.

6. THE TWO-PHOTON COMPTON PROCESS

In case of the two laser beams which are not collinear the experimental
situation involves possibility that the two different photons can interact with one
electron. The theory does not follow from the standard one-photon Volkov solution
because in the standard approach the multiphoton interaction involve the collinear
photons and not photons from the two different lasers. The problem was solved
by Lyulka in 1974 for the case of the two linearly polarized waves (Lyulka, 1974).

A = a1 cos ϕ; B = a2 cos(χ + δ) (71)

with the standard conditions for ϕ, χ, k, κ . The quantity δ is the phase shift.
The two-wave Volkov solution is given by eq. (42) and the matrix elements

and appropriate ingredients of calculations are given by the standard approach as
it was shown by Lyulka (1974).

It was shown (Lyulka, 1974), that

qµ = pµ − e2 a2
1

2(kp)
kµ − e2 a2

2

2(κp)
κµ (72)

and

m2
∗ = m2

(
1 − e2a2

1

m2
− e2a2

2

m2

)
. (73)

The matrix element involves the extended law of conservation. Namely:

sk + tκ + q = q ′ + k′ + κ ′, (74)



Volkov Solution for Two Laser Beams and ITER 673

where s and t are natural numbers and the interpretation of the last equation is
evident. The multiphoton objects with momenta sk and tκ interact with electron
with momentum q. After interaction the electron has a momentum q ′ and two
photons are emitted with momenta k′ and κ ′.

Instead of eq. (74), we can write

sk + q − k′ = q ′ + κ ′ − tκ. (75)

From the squared form of the last equation and after some modification,
we get the following generalized equation of the double Compton process for
s = t = 1:

1

ω′ − 1

ω
= 1

m∗
(1 − cos �) + �′ − �

ωω′ − ��′

ωω′m∗
(1 − cos �), (76)

where the angle � is the angle between the 3-momentum of the κ-photon and the
3-momentum of the κ ′-photon with frequency � and �′, respectively.

Let us remark that if the frequencies of the photons of the first wave substan-
tially differ from the frequency of photons of the second electromagnetic wave,
then, the derived formula (76) can be experimentally verified by the same way
as the original Compton formula. To our knowledge, formula (76) is not involved in
the standard textbooks on quantum electrodynamics because the two laser physics
is at present time not sufficiently developed.

7. DISCUSSION

We have discussed the problem of the Dirac equation with the two-wave
potentials of the electromagnetic fields. While the Volkov solution for one po-
tential is well known for long time, the case with the two waves represents the
new problem. To our knowledge, the Compton process with two beams was not
investigated experimentally by any laboratory.

This article is in a some sense author’s continuation of the problems where
the Compton, or Volkov solution plays substantial role (Pardy, 1998, 2001, 2003,
2004a,b).

It is possible to consider the situation with sum of N waves, or,

V =
N∑

i=1

Ai(ϕi) ϕi = kix. (77)

The problem has obviously physical meaning because the problem of the
laser compression of target by many beams is one of the prestigious problems of
the today laser physics. The goal of the experiments is to generate the physical
process of implosion. When an intense petawat laser light is uniformly impinged on
a spherical fuel pellet, the laser energy is absorbed on the surface to generate a high-
temperature plasma of 2–3 keV and an extremely high pressure of a few hundred
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megabars is generated. The pressure accelerates the outer shall of the target towards
the target centre. If the dynamics is sufficiently spherically symmetric, the central
area is heated up to 5–10 keV and fusion reaction starts (Nakai and Mima, 2004).
The solution of that problem in the general form is not elementary and can be
solved only by some laser institution such as the Lebedev institution of physics,
the Livermore laser national laboratory and so on.

On the other hand, if the target is constituted from material in the form a
foam, then instead of using 100–200 laser beams it is possible to use only two
laser beams, as it is supposed in our article. Then the nuclear fusion is more
realistic in the situation of the thermonuclear reactor (Rozanov, 2004).

Nuclear fusion involves the bringing together of atomic nuclei. The sum of
the individual masses of the nucleons is greater than the mass of the whole nucleus.
This is because the strong nuclear force holds the nucleons together. Then, the
combined nucleus is a lower energy state than the nucleons separately. The energy
difference is released in the fusion process.

There are two major fusion processes. The magnetic confinement and inertial
confinement. The inertial fusion occurs inside targed fuel pellets by imploding
them with laser or particle beam irradiation in brief pulses. It produces extremely
high densities in the targed where the laser pulse creates a shock wave in the pellet
that it intensified by its internal geometry. On the other hand, magnetic fusion
devices, like the tokamak, operate at lower densities, but use magnetic fields to
confine the plasma for longer time.

To achieve a burning plasma, a sufficiently high density of fuel must be heated
to temperatures about 100 million degrees of Celsius that the nuclei collide often
enough despite their natural repulsive forces and energy losses.

The fuels to be used are two isotopes of hydrogen. Namely, deuterium and
tritium. While deuterium occurs naturally in sea water and it means it is inex-
haustible, tritium can be bred in a fusion system when the light element, lithium,
absorbs neutrons produced in the fusion reaction. World resources of lithium are
inexhaustible and it means that also the energy obtained by fusion process is
practically infinite.
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